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Is Cosmic Speed-Up Due to New Gravitational Physics?
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We show that cosmic acceleration can arise due to very tiny corrections to the usual gravitational
action of general relativity of the form Rn, with n < 0. This eliminates the need for dark energy,
though it does not address the cosmological constant problem. Since a modi�cation to the Einstein-
Hilbert action of the form Rn, with n > 0, can lead to early-time ination, our proposal provides a
uni�ed and purely gravitational origin for the early and late time accelerating phases of the Universe.

Introduction. That the expansion of the Universe is
currently undergoing a period of acceleration now seems
inescapable: it is directly measured from the light-curves
of several hundred type Ia supernovae [1, 2, 3], and in-
dependently inferred from observations of the cosmic mi-
crowave background (CMB) by the WMAP satellite [4]
and other CMB experiments [5, 6].

Cosmic speed-up can be accommodated within general
relativity by invoking a mysterious cosmic uid with large
negative pressure, dubbed dark energy. The simplest pos-
sibility for dark energy is a cosmological constant; unfor-
tunately, the smallest estimates for its value are 55 or-
ders of magnitude too large (for reviews see [7, 8]). This
fact has motivated a host of other possibilities, most of
which assume a zero cosmological constant, with the dy-
namical dark energy being associated with a new scalar
�eld [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

However, none of these suggestions is compelling and
most have serious drawbacks. Given the challenge of this
problem, it is worthwhile considering the possibility that
cosmic acceleration is not due to some kind of stu�, but
rather arises from new gravitational physics [20, 21, 22,
23, 24]. This is the angle we pursue in this letter.

General relativity is based upon the Einstein-Hilbert
action, with Lagrange density

p�gR, where R is the cur-
vature scalar. A natural modi�cation is to add terms to
the action that are proportional to

p�gRn. It is known
that, for n > 1, such terms lead to modi�cations of the
standard cosmology at early times which lead to de Sit-
ter behavior (Starobinskii ination [25]). Here, we show
that, for n < 0, such corrections become important in the
late Universe and can lead to self-accelerating vacuum
solutions, providing a purely gravitational alternative to
dark energy.
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The self-accelerating solutions we �nd can behave like
vacuum energy (i.e., wDE � PDE=�DE = �1), or can
lead to power-law acceleration with cosmic scale factor
a / tq, q > 1, and wDE < �2=3. We also argue that
our model is consistent with existing tests of gravitation
theory and that the accelerating phase is consistent with
current cosmological observations.
A Model. Many authors have considered modifying the

Einstein-Hilbert action with terms that become e�ective
in the high-curvature region. Here, however, we explore
modi�cations which become important at extremely low
curvatures to explain cosmic speed-up. For de�niteness
and simplicity we focus on the simplest correction to the
Einstein-Hilbert action,

S =
M2

P

2

Z
d4x

p�g
�
R� �4

R

�
+

Z
d4x

p�g LM : (1)

Here � is a new parameter with units of [mass], LM is the
Lagrangian density for matter and the reduced Planck
mass MP � (8�G)�1=2. For work on theories where the
Lagrangian takes the form f(R), see [26, 27, 28, 29, 30,
31, 32].
The �eld equation for the metric is then�
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P

; (2)

where TM�� is the matter energy-momentum tensor.
The constant-curvature vacuum solutions, for which

r�R = 0, satisfy R = �
p
3�2. Thus, we �nd the in-

teresting result that the constant-curvature vacuum so-

lutions are not Minkowski space, but rather are de Sitter

space and anti de Sitter space. This bifurcation of the
vacuum solutions from a unique one (Minkowski space)
to two new ones (de Sitter and Anti-de Sitter spaces) as
�4 is increased from zero is unusual and is to be con-
trasted with the case of a cosmological constant. We will
see that the de Sitter solution is, in fact, unstable, albeit
with a very long decay time � � ��1.
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We consider a perfect-uid energy-momentum tensor,

TM�� = (�M + PM )U�U� + PMg�� ; (3)

where Ua is the uid rest-frame four-velocity, �M is
the energy density, PM is the pressure and we write
PM = w�M . Matter corresponds to w = 0 and radi-
ation to w = 1=3. We take the metric to be of the at
Robertson-Walker form, ds2 = �dt2+a2(t)dx2, for which
the curvature scalar satis�es

R = 6

"
�a

a
+

�
_a

a

�2#
= 6

�
_H + 2H2

�
; (4)

where an overdot denotes di�erentiation with respect to
time, H = _a=a and a(t) is the scale factor.
The time-time component of the �eld equations for this

metric is

3H2 � �4

12( _H + 2H2)3

�
2H �H

+ 15H2 _H + 2 _H2 + 6H4
�
=

�M
M2

P

: (5)

This replaces the usual Friedmann equation, recovered
by setting � = 0. The space-space components of (2)
lead to the other independent Einstein equation,

_H +
3

2
H2 � �4

72( _H + 2H2)2

h
4 _H + 9H2
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P
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The above fourth-order equations are complicated and
it is diÆcult to extract details about cosmological evolu-
tion from them. It is convenient to transform from our
current frame, which we call the matter frame, to the
Einstein frame, where the gravitational Lagrangian takes
the Einstein-Hilbert form and the additional degrees of
freedom ( �H and _H) are represented by a �ctitious scalar
�eld �.
Following [29], we make a conformal transformation

~g�� = p(�)g�� ; p � exp

 r
2

3

�

MP

!
� 1 +

�4

R2
; (7)

where � is a real scalar function on space-time, d~t =p
pdt, and ~a(t) =

p
pa(t). It is then convenient to de�ne

an Einstein-frame matter energy-momentum tensor by

~TM�� = (~�M + ~PM ) ~U� ~U� + ~PM~g�� ; (8)

where ~Ua � ppUa, ~�M = �M=p2 and ~PM = PM=p2.
In terms of the new metric ~g��, our theory is that of a

scalar �eld �(x�) minimally coupled to Einstein gravity,
and non-minimally coupled to matter, with potential

V (�) = �2M2
P

p
p� 1

p2
; (9)

shown in the �gure below. Note that V (�)! 0 both for
�! 0 (p! 1) and for �!1 (p!1) and achieves its
maximum, 9�2M2

P=16
p
3, at p = 4=3.
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FIG. 1: The Einstein-frame potential V (�)

Denoting with a tilde all quantities (except �) in the
Einstein frame, the relevant Einstein-frame cosmological
equations of motion are

3 ~H2 =
1

M2
P

[�� + ~�] ; (10)

�00 + 3 ~H�0 +
dV

d�
(�) � (1� 3w)p

6
~�M = 0 ; (11)

where a prime denotes d=d~t, and where

~�M =
C

~a3(1+w)
exp

�
� (1� 3w)p

6

�

MP

�
; (12)

with C a constant, and

�� =
1

2
�02 + V (�) : (13)

The matter-frame Hubble parameter H is related to that
in the Einstein frame ~H � ~a0=~a by

H =
p
p

�
~H � �0

MP

p
6

�
: (14)

What can we say about cosmological solutions in the
more friendly setting of the Einstein frame? Ordinarily,
Einstein gravity with a scalar �eld with a minimum at
V = 0 would yield a Minkowski vacuum state. However,
here this is no longer true. Even though V ! 0 as � !
0, this corresponds to a curvature singularity and so is
not a Minkowski vacuum. The other minimum of the
potential, at � ! 1, is clearly not a static solution.
These statements are also easily seen in the matter frame.
Now let us �rst focus on vacuum cosmological solu-

tions, i.e., PM = �M = 0. The beginning of the Universe
corresponds to R!1 and �! 0. The initial conditions
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we must specify are the initial values of � and �0, denoted
as �i and �0i. For simplicity we take �i � MP. There
are then three qualitatively distinct outcomes, depending
on the value of �0i.
1. Eternal de Sitter. There is a critical value of

�0i � �0C for which � just reaches the maximum of the
potential V (�) and comes to rest. In this case the Uni-
verse asymptotically evolves to a de Sitter solution (ig-
noring spatial perturbations). As we have discovered be-
fore (and is obvious in the Einstein frame), this solution
requires tuning and is unstable, since any perturbation
will induce the �eld to roll away from the maximum of
its potential.
2. Power-Law Acceleration. For �0i > �0C , the

�eld overshoots the maximum of V (�). Soon there-
after, the potential is well-approximated by V (�) '
�2M2

P exp(�
p
3=2�=MP), and we easily solve for ~a(~t) /

~t4=3, which corresponds to a(t) / t2 in the matter frame.
Thus, the Universe evolves to late-time power-law ina-
tion, with observational consequences similar to dark en-
ergy with equation-of-state parameter wDE = �2=3.
3. Future Singularity. For �0i < �0C , � does not reach

the maximumof its potential and rolls back down to � =
0. This yields a future curvature singularity in which the
Hubble parameter remains �nite in both the matter and
Einstein frames, but its time derivative becomes in�nite
because _H / V 0 ! 1=

p
�!1.

We now turn to the more interesting case in which the
Universe contains matter. As can be seen from (10), the
major di�erence here is that the equation-of-motion for �
in the Einstein frame has a new term. Furthermore, since
the matter density is much greater than V � �2M2

P for
t� 14Gyr, this term is very large and greatly a�ects the
evolution of �. The exception is when the matter content
is radiation alone (w = 1=3), in which case it decouples
from the � equation due to conformal invariance.
Despite this complication, it is possible to show that

the three possible cosmic futures identi�ed in the vacuum
case remain in the presence of matter. To see this, �rst
note that, if we ignore the V 0 term in (10) because it
is subdominant at early times, and assume that 3 ~H2 =
~�M=M2

P, we obtain

�0(~t) = �0(~t0)

�
~a0
~a

�3
+

Cp
6

�
~t� ~t0
~a3

�
; (15)

for w = 0, and

�0(~t) = �0(~t0)

�
~a0
~a

�3
; (16)

for w = 1=3.
The value of �0 redshifts as it would for a free scalar

�eld and, for w = 0, increases dramatically due to
the presence of matter. By tuning �0i, the value of �0

at the epoch when matter becomes unimportant (i.e.,

~�M < �2M2
P) can be adjusted, resulting in the same three

futures as in the vacuum theory.
Thus far, we have left the dimensionful parameter �

unspeci�ed beyond the requirement that it be suÆciently
small that precision tests of gravity theory are not af-
fected (see below). By choosing � � 10�33 eV, the correc-
tions to the standard cosmology only become important
at the present epoch, making our theory a candidate to
explain the observed acceleration of the Universe with-
out recourse to dark energy. It is, of course, important
to be clear that we have merely chosen the value of �
to achieve this end. Since we have no particular reason
for this choice, such a tuning appears no more attractive
than the traditional choice of the cosmological constant.
However, it is intriguing to note that, in the present cir-
cumstance, the smallness of the 1=R term in the action is
directly related to the lateness of the accelerating phase.
Thus, even an extremely tiny correction to the Einstein
action can eventually have dramatic consequences.
Clearly our choice of correction to the gravitational ac-

tion can be generalized. Terms of the form��2(n+1)=Rn,
with n > 1, lead to similar late-time self acceleration.
Such actions can be transformed into the Einstein frame
with scalar �eld potential

V (p) = �2M2
P

�
n + 1

2n

�
n1=(n+1)

(p � 1)n=(n+1)

p2
; (17)

with resulting matter-frame scale factor a(t) / tq, where

q =
(2n+ 1)(n+ 1)

n+ 2
: (18)

Such a modi�cation thus yields behavior similar to a dark
energy component with equation of state parameter

we� = �1 + 2(n+ 2)

3(2n+ 1)(n + 1)
: (19)

As n!1 the expansion approaches an exponential and
the space-time is approximately de Sitter. Clearly there-
fore, such modi�cations can easily accommodate current
observational bounds [33, 34] on the equation of state
parameter �1:45 < wDE < �0:74 (95% con�dence level).
Finally, any modi�cation of the Einstein-Hilbert ac-

tion must, of course, be consistent with the classic solar
system tests of gravity theory, as well as numerous other
astrophysical dynamical tests. Many such tests depend
on the Schwarzschild solution, which Birkho�'s theorem
ensures is the unique, static, spherically-symmetric solu-
tion. It is simple to prove a related result here: that the
most general, static, spherically-symmetric solutions are
the Schwarzschild-(anti) de Sitter solutions. These solu-
tions di�er, of course, from the familiar Schwarzschild
solution, which asymptotically approaches Minkowski
space. However, it is clear that, if the parameter �4 is
chosen small enough, any astrophysical tests of gravity
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that depend on the Schwarzschild solution will be un-
a�ected by the modi�cation we have made. We expect
similar arguments will hold for the cases of charged black
holes and those with angular momentum.
Concluding Remarks. We have shown that the current

epoch of cosmic acceleration can arise through purely
gravitational e�ects, eliminating the need for dark en-
ergy. In particular, modi�cations to the Einstein{Hilbert
action of the form ��2(n+1)=Rn, with � � 10�33 eV and
n < 0, can lead to cosmic speed up with �1 < we� �
�2=3.
There is, of course, growing evidence from measure-

ments of CMB anisotropy, as well as of large-scale struc-
ture, that the Universe also evolved through a period
of accelerated expansion very early on, known as ina-
tion. It is also known that modi�cations to the Einstein-
Hilbert action of the form m�2R2, with m a mass pa-
rameter, yield an Einstein-frame potential

V (�) = m2M2
P

(p� 1)2

8p
; (20)

where, as before, p � exp[
p
2=3�=MP]. In this case,

the beginning of the Universe occurs at large � and the
Universe undergoes ination. Thus, our work implies
that it is possible for both eras of cosmic acceleration
to arise from the gravitational sector of the theory, with
general relativity being a valid description of the Universe
only at intermediate cosmic times.
There are certainly many other details of this theory

that remain to be checked. In particular, we would like
to analyze quantitatively the behavior of the transition
from matter domination to self acceleration as well as
the growth of linearized perturbations about the given
background solutions we have identi�ed.
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